
Module 5: Structured Query Language (SQL) - Part 2
Welcome back! In Module 4, you learned the absolute basics of SQL: how to build the
structure of your database (like drawing the blueprint for a house with CREATE TABLE) and
how to put basic things in and out of those structures (INSERT, SELECT with WHERE,
UPDATE, DELETE). That was like learning the alphabet and basic sentences in SQL.

Now, in Module 5, we're going to learn how to write much more powerful "sentences" in SQL.
This is where SQL truly shines for making sense of large amounts of data. Imagine you have
thousands of student records. You probably don't want to see every single one. You might
want to know:

●​ "What's the average grade in this class?"
●​ "How many students are there in each major?"
●​ "Which departments have a lot of students?"
●​ "Show me all the students, sorted by their last name."
●​ "Combine information from the Students table and the Departments table so I can

see each student's name and their department's name."
●​ "Find students who earn more than the average salary for their major."

To answer questions like these, we need Advanced SQL Queries. We'll learn how to
summarize data, group it into categories, sort it, combine it from different tables, and even
use the results of one query to help answer another. This module will give you the tools to
become a true data explorer!

Chapter 5: Advanced SQL Queries

5.1 Aggregate Functions

Imagine you have a big pile of numbers, like all the test scores from a class. Instead of
looking at each score, you might want to find out some quick facts about the whole class.
Aggregate functions are like special calculators in SQL that take a whole bunch of values
from many rows and squish them down into one single result. They give you a summary.

When you use an aggregate function by itself (without something called GROUP BY, which
we'll learn soon), it will calculate its result using all the rows that your FROM and WHERE
clauses found.

Let's look at the most common ones:

●​ COUNT() - How Many?​

○​ What it does: This function counts things. It tells you "how many" of
something there are.

○​ Different ways to use it:

■​ COUNT(*): This is like asking, "How many rows are there in total?" It
counts every single row, even if some columns in those rows are
empty (NULL).​

Example: If you have a Students table, and you want to know the total number of
students:​
 SQL​
SELECT COUNT(*)
FROM Students;

■​ If your Students table has 100 rows, this will give you 100.
■​ COUNT(column_name): This is like asking, "How many rows have a

non-empty value in this specific column?" It only counts rows where
the column_name has an actual value. If it's NULL (meaning unknown
or empty), that row is not counted for this specific column.​

Example: If some students haven't provided an email address (their Email column is
NULL), and you only want to count students with an email:​
 SQL​
SELECT COUNT(Email)
FROM Students;

■​ If 95 students have an email and 5 don't, this will give you 95.
■​ COUNT(DISTINCT column_name): This is like asking, "How many

unique non-empty values are there in this specific column?" It counts
each different value only once.​

Example: If your Students table has students from MajorDeptIDs 10, 20, 10, 30, 20, 10,
and you want to know how many different departments students are majoring in:​
 SQL​
SELECT COUNT(DISTINCT MajorDeptID)
FROM Students;

■​ This will give you 3 (for DeptID 10, 20, and 30, assuming no
NULLs).

●​ SUM() - What's the Total?​

○​ What it does: Adds up all the numbers in a specified column.
○​ Important: This only works for columns that contain numbers (like INTEGER,

DECIMAL, FLOAT).
○​ Syntax: SUM(numeric_column_name)

Example: To find the total amount of money paid in salaries to all employees:​
 SQL​
SELECT SUM(Salary)
FROM Employees;

○​ If salaries are 50000, 60000, 70000, this will give you 180000.
●​ AVG() - What's the Average?​

○​ What it does: Calculates the average value (the sum of all numbers divided

by the count of those numbers) in a specified column.
○​ Important: This also only works for columns that contain numbers.
○​ Syntax: AVG(numeric_column_name)

Example: To find the average grade point average (GPA) across all students:​
 SQL​
SELECT AVG(GPA)
FROM Students;

○​ If GPAs are 3.0, 3.5, 4.0, this will give you 3.5.
●​ MIN() - What's the Smallest?​

○​ What it does: Finds the smallest value in a specified column.
○​ Works for: Numbers, text (alphabetical order), and dates/times.
○​ Syntax: MIN(column_name)

Example: To find the earliest birth date among all students (which helps you find the oldest
student):​
 SQL​
SELECT MIN(DateOfBirth)
FROM Students;

○​ If dates are 2004-01-01, 2003-05-10, 2005-09-15, this will give you
2003-05-10.

●​ MAX() - What's the Largest?​

○​ What it does: Finds the largest value in a specified column.
○​ Works for: Numbers, text (alphabetical order), and dates/times.
○​ Syntax: MAX(column_name)

Example: To find the highest salary paid to any employee:​
 SQL​
SELECT MAX(Salary)
FROM Employees;

○​ If salaries are 50000, 60000, 70000, this will give you 70000.

Key takeaway for Aggregate Functions: They always take many rows as input and give
you just one summary row as output, unless you use GROUP BY.

5.2 GROUP BY Clause

Now, let's connect the dots. You know how to get the AVG() salary for all employees. But
what if you want the AVG() salary for each department? Or the COUNT() of students in each
major? This is where the GROUP BY clause becomes incredibly useful.

The GROUP BY clause works hand-in-hand with aggregate functions. It tells SQL to divide
your rows into smaller "groups" based on one or more columns you specify. Then, the
aggregate functions you use in your SELECT statement will calculate their summaries for
each of these groups individually.

Imagine this: You have a big stack of papers, and each paper is a student record.

●​ If you just use COUNT(*), you count all papers in the stack (total students).
●​ If you want to COUNT(*) per major, you first GROUP BY MajorDeptID. This means

you physically separate the papers into smaller stacks: one stack for "Computer
Science majors," one for "Physics majors," etc. Then, you COUNT(*) the papers in
each individual stack.

General Syntax:

SQL
SELECT column_to_group_by, another_column_to_group_by,
aggregate_function(some_column)
FROM table_name
WHERE condition_to_filter_rows -- (Optional: filters rows BEFORE grouping)
GROUP BY column_to_group_by, another_column_to_group_by;

Important Rules for GROUP BY:

1.​ Select List Rule: Any column that you put in your SELECT statement that is not
inside an aggregate function (COUNT, SUM, AVG, MIN, MAX) must also be listed in your
GROUP BY clause.​

○​ Why? Because if you group by DeptID, SQL can show you DeptID (since
there's only one per group). But if you also try to select EmployeeName
without an aggregate, which EmployeeName should it show? There could be
many employees in one DeptID group. So, you can only select the columns
you're grouping by, or columns inside aggregate functions.

2.​ Order of Execution (Logical Flow): It's helpful to understand the logical steps SQL
takes:​

○​ 1. FROM: SQL first looks at the table(s) you specified.
○​ 2. WHERE: If you have a WHERE clause, SQL filters out individual rows that

don't meet the condition. Only the remaining rows continue.
○​ 3. GROUP BY: SQL then takes these filtered rows and groups them based on

the GROUP BY columns.
○​ 4. Aggregate Functions: For each of these newly formed groups, SQL

calculates the aggregate functions (e.g., SUM, AVG).
○​ 5. SELECT: Finally, SQL selects the specified columns (the grouping columns

and the aggregate results) for each group.

Examples:

Count the number of students in each major department:​
​
 SQL​
SELECT MajorDeptID, COUNT(StudentID) AS NumberOfStudents -- NumberOfStudents is
an alias for readability
FROM Students
GROUP BY MajorDeptID;

●​

Possible Result:​
MajorDeptID	NumberOfStudents
10 | 150
20 | 120
30 | 80
NULL | 5 -- Students without a major

○​

Find the average salary for each job title:​
​
 SQL​
SELECT JobTitle, AVG(Salary) AS AverageSalary
FROM Employees
GROUP BY JobTitle;

●​

Find the earliest and latest enrollment dates for each major:​
​
 SQL​
SELECT MajorDeptID, MIN(EnrollmentDate) AS FirstEnrollment, MAX(EnrollmentDate) AS
LastEnrollment
FROM Students
GROUP BY MajorDeptID;

●​

5.3 HAVING Clause

You know that the WHERE clause filters individual rows before grouping. But what if you want
to filter the groups themselves? For example, "Show me only departments that have more
than 100 students," or "Which product categories have an average price above $50?"

You can't use WHERE for this because WHERE operates on individual rows before aggregates
are calculated. That's where the HAVING clause comes in.

The HAVING clause is specifically designed to filter groups based on conditions that often
involve aggregate functions. It's like a WHERE clause, but it applies to the results of the
GROUP BY operation.

General Syntax:

SQL
SELECT column_to_group_by, aggregate_function(some_column)
FROM table_name
WHERE condition_on_rows -- Optional: Filters individual rows BEFORE grouping
GROUP BY column_to_group_by
HAVING condition_on_groups; -- Filters the groups AFTER grouping and aggregation

Logical Order of Execution (Revisited with HAVING):

1.​ FROM: Identify tables.
2.​ WHERE: Filter individual rows (non-aggregated data).
3.​ GROUP BY: Group the remaining rows.
4.​ Aggregate Functions: Calculate summaries for each group.
5.​ HAVING: Filter the groups based on conditions, often using the results of the

aggregate functions.
6.​ SELECT: Display the final results.

Examples:

Find major departments that have more than 100 students:​
​
 SQL​
SELECT MajorDeptID, COUNT(StudentID) AS NumberOfStudents
FROM Students
GROUP BY MajorDeptID
HAVING COUNT(StudentID) > 100;

●​
○​ Explanation:

1.​ All students are grouped by MajorDeptID.
2.​ COUNT(StudentID) is calculated for each MajorDeptID group.
3.​ The HAVING clause then checks COUNT(StudentID) > 100 for

each group's count. Only groups meeting this condition are shown.

List departments where the average employee salary is greater than $60,000:​
​
 SQL​
SELECT DeptID, AVG(Salary) AS AverageSalary
FROM Employees
GROUP BY DeptID
HAVING AVG(Salary) > 60000;

●​

Find product categories where the minimum price is at least $20, but only for
products that are currently in stock (Quantity > 0):​
​
 SQL​
SELECT Category, MIN(Price) AS MinPrice, COUNT(*) AS NumProducts
FROM Products
WHERE Quantity > 0 -- Filters individual products
GROUP BY Category
HAVING MIN(Price) >= 20 AND COUNT(*) > 5; -- Filters groups

●​
○​ Note the combined use of WHERE and HAVING: WHERE removes out-of-stock

items first, then GROUP BY groups the remaining items, and HAVING filters
those groups based on MIN(Price) and COUNT(*).

5.4 ORDER BY Clause

The ORDER BY clause is all about presentation. After SQL has figured out which rows to
select, grouped them (if applicable), and filtered them (if applicable), the ORDER BY clause
tells SQL how you want the final results to be sorted when they are displayed to you. It does
not change the way data is stored in the database; it only affects the output of your query.

Imagine this: You've made your list of students. Now you want to sort that list alphabetically
by last name, or by GPA from highest to lowest.

General Syntax:

SQL
SELECT column1, column2, ...
FROM table_name
[WHERE condition]
[GROUP BY columns]
[HAVING condition]

ORDER BY column_or_expression1 [ASC | DESC], column_or_expression2 [ASC | DESC],
...;

●​ ORDER BY: The keywords that indicate you want to sort the results.
●​ column_or_expression: You specify the column(s) by which you want to sort. You

can also sort by an expression, like an aggregate function result (e.g., ORDER BY
COUNT(StudentID)).

●​ [ASC | DESC]: These are optional keywords:
○​ ASC: Stands for Ascending. This sorts from smallest to largest (e.g., A-Z for

text, 0-9 for numbers, earliest to latest date). This is the default behavior if
you don't specify ASC or DESC.

○​ DESC: Stands for Descending. This sorts from largest to smallest (e.g., Z-A
for text, 9-0 for numbers, latest to earliest date).

Sorting by Multiple Columns (Primary and Secondary Sorts): You can list multiple
columns in your ORDER BY clause, separated by commas. SQL will sort by the first column
listed. If there are rows that have the same value in the first column (a "tie"), then SQL will
use the second column to sort those tied rows. If there are still ties, it moves to the third
column, and so on.

Logical Position: The ORDER BY clause is always the very last logical operation in a
SELECT statement. It operates on the final result set produced by all the other clauses.

Examples:

Sort all students by their LastName alphabetically (ascending):​
​
 SQL​
SELECT StudentID, FirstName, LastName
FROM Students
ORDER BY LastName ASC; -- 'ASC' is optional here as it's the default

●​

Sort employees by Salary from highest to lowest, and if salaries are the same, then
by FirstName alphabetically:​
​
 SQL​
SELECT EmpID, EmpName, Salary
FROM Employees
ORDER BY Salary DESC, FirstName ASC;

●​
○​ Result: Employees with higher salaries appear first. If two employees have

the same salary, the one whose first name comes earlier alphabetically will
appear first among those with that salary.

List departments, sorted by the number of students they have, from most students to
fewest:​
​
 SQL​
SELECT MajorDeptID, COUNT(StudentID) AS NumberOfStudents
FROM Students
GROUP BY MajorDeptID
ORDER BY NumberOfStudents DESC; -- Sorting by the aggregated result

●​

5.5 SQL Joins

In Module 2, we learned about the Relational Model and how data is often split across
multiple tables to avoid repetition (data redundancy) and ensure accuracy (data integrity)
using Primary Key-Foreign Key relationships. For example, student details are in a
Students table, and department details are in a Departments table, linked by
MajorDeptID (FK) and DeptID (PK).

When you need to get information that combines data from these different, but related,
tables, you use Joins. A JOIN operation combines rows from two or more tables based on a
related column between them. It's how you bring scattered pieces of related information
together into one meaningful result.

Let's imagine our Students table and Departments table:

Students Table:

StudentID FirstName LastName MajorDeptID

101 Alice Smith 10

102 Bob Johnson 20

103 Carol Davis 10

104 David Lee NULL

Export to Sheets

Departments Table:

DeptID DeptName Location

10 Computer
Science

Main Campus

20 Physics North Campus

30 Chemistry East Campus

Export to Sheets

5.5.1 INNER JOIN (or just JOIN)

●​ What it does: This is the most common and default type of join. An INNER JOIN
creates a new result table by combining rows from two tables ONLY when there is a
match in the specified common column(s) in both tables. If a row in one table doesn't
have a matching row in the other table, it is not included in the result.​

●​ Analogy: Imagine you have a list of students and a list of departments. An INNER
JOIN is like finding all the students who actually have a matching department listed
in the department table. Students without a major (NULL) or with a MajorDeptID
that doesn't exist in the Departments table will be left out.​

Syntax:​
​
 SQL​
SELECT columns_you_want
FROM table1
INNER JOIN table2
ON table1.common_column = table2.common_column;

●​
○​ ON: This keyword specifies the join condition. It's usually where you state

how the two tables are linked (e.g., Students.MajorDeptID =
Departments.DeptID).

○​ Table Aliases: It's good practice to use short aliases (like S for Students, D
for Departments) for table names, especially when dealing with multiple
tables or self-joins. This makes the query shorter and clearer.

Example: Get the FirstName, LastName of students and the DeptName of their major
department.​
​
 SQL​
SELECT S.FirstName, S.LastName, D.DeptName
FROM Students AS S
INNER JOIN Departments AS D
ON S.MajorDeptID = D.DeptID;

●​

Result based on example tables:​
FirstName	LastName	DeptName
Alice | Smith | Computer Science
Bob | Johnson | Physics

Carol | Davis | Computer Science

○​
○​ Explanation: David Lee (StudentID 104) is not in the result because his

MajorDeptID is NULL, which doesn't match any DeptID in the
Departments table. Also, Chemistry (DeptID 30) is not in the result
because no student has MajorDeptID = 30.

5.5.2 LEFT JOIN (or LEFT OUTER JOIN)

●​ What it does: A LEFT JOIN returns all rows from the left table (the first table
mentioned in your FROM clause) and the matching rows from the right table. If
there's no match for a row in the left table in the right table, the columns from the
right table will show NULL values for that row.

●​ Analogy: "Show me all the students, and if they have a major, show me its name. If
they don't have a major, still show the student, but put NULL for the department
name."

Syntax:​
 SQL​
SELECT columns_you_want
FROM table1 -- This is the LEFT table
LEFT JOIN table2 -- This is the RIGHT table
ON table1.common_column = table2.common_column;

●​

Example: Get all student names and their major department names (if any).​
 SQL​
SELECT S.FirstName, S.LastName, D.DeptName
FROM Students AS S -- Students is the LEFT table
LEFT JOIN Departments AS D -- Departments is the RIGHT table
ON S.MajorDeptID = D.DeptID;

●​

Result based on example tables:​
FirstName	LastName	DeptName
Alice | Smith | Computer Science
Bob | Johnson | Physics
Carol | Davis | Computer Science
David | Lee | NULL -- David's MajorDeptID is NULL, so no match from
Departments

○​
○​ Explanation: Notice that David Lee is now included, but his DeptName is

NULL because there was no matching department for his MajorDeptID

(which was NULL). The Chemistry department (DeptID 30) is still not in the
result because it was only asked to keep all rows from the left table
(Students).

5.5.3 RIGHT JOIN (or RIGHT OUTER JOIN)

●​ What it does: A RIGHT JOIN is the opposite of a LEFT JOIN. It returns all rows
from the right table (the second table mentioned in your FROM clause) and the
matching rows from the left table. If there's no match for a row in the right table in
the left table, the columns from the left table will show NULL values.

●​ Analogy: "Show me all the departments, and if they have students, show me their
names. If a department has no students, still show the department, but put NULL for
the student name."

Syntax:​
 SQL​
SELECT columns_you_want
FROM table1 -- This is the LEFT table
RIGHT JOIN table2 -- This is the RIGHT table
ON table1.common_column = table2.common_column;

●​

Example: Get all department names and any students who major in them.​
 SQL​
SELECT S.FirstName, S.LastName, D.DeptName
FROM Students AS S -- Students is the LEFT table
RIGHT JOIN Departments AS D -- Departments is the RIGHT table
ON S.MajorDeptID = D.DeptID;

●​

Result based on example tables:​
​
FirstName	LastName	DeptName
Alice | Smith | Computer Science
Bob | Johnson | Physics
Carol | Davis | Computer Science
NULL | NULL | Chemistry -- Chemistry (DeptID 30) has no matching students

○​
○​ Explanation: Here, Chemistry (DeptID 30) is included even though no

student majors in it. The student columns (FirstName, LastName) are NULL
for this row. David Lee (who had MajorDeptID = NULL) is not in this
result because he did not match any DeptID from the Departments table.​

○​ Note: In practice, RIGHT JOIN can almost always be rewritten as a LEFT
JOIN by simply swapping the order of the tables in the FROM clause. Most
developers stick to LEFT JOIN for consistency.​

5.5.4 FULL JOIN (or FULL OUTER JOIN)

●​ What it does: A FULL JOIN returns all rows when there is a match in either the left
table or the right table. It's essentially a combination of a LEFT JOIN and a RIGHT
JOIN. If a row from one table has no match in the other, the corresponding columns
from the non-matching table will show NULL values.

●​ Analogy: "Show me all students and all departments. Match them up where
possible. If a student has no major, show them with a NULL department. If a
department has no students, show it with NULL student info."

Syntax:​
 SQL​
SELECT columns_you_want
FROM table1
FULL JOIN table2
ON table1.common_column = table2.common_column;

●​
●​ Note: Not all database systems fully support FULL JOIN (e.g., MySQL does not

have a direct FULL JOIN keyword and requires a combination of LEFT JOIN,
RIGHT JOIN, and UNION).

Example: Get all students and all departments, regardless of whether they have a match.​
 SQL​
SELECT S.FirstName, S.LastName, D.DeptName
FROM Students AS S
FULL JOIN Departments AS D
ON S.MajorDeptID = D.DeptID;

●​

Result based on example tables (assuming DBMS supports FULL JOIN):​
FirstName	LastName	DeptName
Alice | Smith | Computer Science
Bob | Johnson | Physics
Carol | Davis | Computer Science
David | Lee | NULL -- Student with no matching DeptID
NULL | NULL | Chemistry -- Department with no matching student

○​

○​ Explanation: This query provides a complete picture, showing students who
have majors, students who don't, and departments that have students, and
departments that don't.

5.5.5 SELF-JOIN

●​ What it does: Sometimes, the relationship you want to explore exists within a single
table. A SELF-JOIN is when you join a table with itself. This might seem strange, but
it's very useful for finding relationships between different rows of the same table. A
common example is an Employees table where an EmployeeID is linked to a
ManagerID (which is also an EmployeeID).​

●​ Key Technique: To perform a SELF-JOIN, you must use table aliases. You treat
the same table as if it were two separate, distinct tables during the query.​

Example: Assume an Employees table: Employees Table: | EmpID | EmpName |
ManagerID | | :---- | :------------ | :-------- | | 1 | Alice | NULL | | 2 | Bob | 1 | | 3 | Carol | 1 | | 4 |
David | 2 |​
​
 We want to list each employee and their manager's name.​
​
 SQL​
SELECT E.EmpName AS EmployeeName, M.EmpName AS ManagerName
FROM Employees AS E -- Treat this as the "employee" instance of the table
INNER JOIN Employees AS M -- Treat this as the "manager" instance of the table
ON E.ManagerID = M.EmpID; -- Join where the employee's ManagerID matches the
manager's EmpID

●​

Result:​
EmployeeName	ManagerName
Bob | Alice
Carol | Alice
David | Bob

○​
○​ Explanation: We effectively created two "copies" of the Employees table

(aliased as E and M) and joined them to find the employee-manager
relationships. Alice is not listed as an EmployeeName because she has no
ManagerID.

5.5.6 CROSS JOIN

●​ What it does: A CROSS JOIN creates the Cartesian Product of two tables. This
means it combines every single row from the first table with every single row from the
second table. No join condition (ON clause) is specified for a CROSS JOIN.

●​ Analogy: If you have 3 shirts and 4 pairs of pants, a CROSS JOIN would give you all
12 possible shirt-and-pants combinations.

Syntax:​
 SQL​
SELECT columns_you_want
FROM table1
CROSS JOIN table2;

●​
○​ Caution: CROSS JOIN can produce extremely large result sets

(number_of_rows_in_table1 * number_of_rows_in_table2). Use it
with extreme caution and only when you truly need every possible
combination.

Example: (Using our Students and Departments tables)​
 SQL​
SELECT S.FirstName, D.DeptName
FROM Students AS S
CROSS JOIN Departments AS D;

●​

Result based on example tables: (4 students * 3 departments = 12 rows)​
FirstName	DeptName
Alice | Computer Science
Alice | Physics
Alice | Chemistry
Bob | Computer Science
Bob | Physics
Bob | Chemistry
... (and so on for Carol and David, paired with all 3 departments)

○​
○​ Use Cases: CROSS JOIN is rarely used directly for common data retrieval.

Its main uses are in specific scenarios like generating test data, creating
combinations, or as a fundamental building block for more complex join types
(though modern SQL typically handles this implicitly).

5.6 Subqueries (Nested Queries)

Sometimes, to answer a question, you need to first ask another question to the database.
This is where subqueries (also called nested queries or inner queries) come in. A
subquery is simply a SELECT statement written inside another SQL query.

The subquery always runs first, and its result is then used by the outer (main) query.
Subqueries are always enclosed in parentheses ().

Think of it: "First, find X. Then, use X to find Y."

Rules for Subqueries:

●​ They must be enclosed in parentheses ().
●​ They run before the outer query.
●​ They can return a single value, a single row, or a whole table.
●​ They can be used in SELECT, FROM, WHERE, and HAVING clauses.

Let's look at the different types based on what they return:

5.6.1 Scalar Subqueries

●​ What it returns: A single value (one row, one column).
●​ Where you can use it: Anywhere a single value or an expression is expected, such

as in the SELECT list, WHERE clause, HAVING clause, or SET clause of an UPDATE
statement.

Example: Find the names of employees whose salary is greater than the overall average
salary of all employees.​
 SQL​
SELECT EmpName, Salary
FROM Employees
WHERE Salary > (SELECT AVG(Salary) FROM Employees);

●​
○​ Explanation:

1.​ The inner subquery (SELECT AVG(Salary) FROM Employees)
runs first. It calculates the average salary for all employees (e.g.,
65000).

2.​ The outer query then becomes SELECT EmpName, Salary FROM
Employees WHERE Salary > 65000;. It filters the employees
based on this single value.

5.6.2 Row Subqueries

●​ What it returns: A single row, which can contain one or more columns.
●​ Where you can use it: Typically in the WHERE or HAVING clause, usually for

comparisons where you need to match multiple column values at once (row-wise
comparison).

Example: Find the StudentID of any student who has the exact same first name and last
name as StudentID 101.​
 SQL​
SELECT StudentID, FirstName, LastName

FROM Students
WHERE (FirstName, LastName) = (SELECT FirstName, LastName FROM Students
WHERE StudentID = 101);

●​
○​ Explanation:

1.​ The inner subquery (SELECT FirstName, LastName FROM
Students WHERE StudentID = 101) returns a single row like
('Alice', 'Smith').

2.​ The outer query then looks for rows where both FirstName is 'Alice'
and LastName is 'Smith'.

5.6.3 Table Subqueries (Derived Tables / Inline Views)

●​ What it returns: A complete table, with one or more rows and one or more columns.
●​ Where you can use it:

○​ In the FROM clause, where it acts as a temporary table that the outer query
can select from (often called a derived table or inline view). When used in
the FROM clause, it must be given an alias.

○​ With operators like IN, EXISTS, ANY, ALL (covered in the next section).

Example (Derived Table): Find the average salary for departments that have more than 5
employees.​
 SQL​
SELECT DeptStats.DeptID, DeptStats.AverageSalary
FROM (
 SELECT DeptID, AVG(Salary) AS AverageSalary, COUNT(EmpID) AS NumEmployees
 FROM Employees
 GROUP BY DeptID
 HAVING COUNT(EmpID) > 5
) AS DeptStats; -- The subquery result is a temporary table named DeptStats

●​
○​ Explanation:

1.​ The inner subquery first calculates the average salary and employee
count for each department, but only keeps departments with more
than 5 employees.

2.​ This result becomes a temporary table called DeptStats.
3.​ The outer query then simply selects the DeptID and

AverageSalary from this temporary DeptStats table. This
approach makes complex queries more modular and readable.

5.7 ANY, ALL, EXISTS, IN Operators with Subqueries

These operators are powerful tools used with subqueries in the WHERE or HAVING clauses to
create very specific conditions. They help you compare a value to a set of values returned by
a subquery.

●​ IN Operator:​

○​ What it does: Checks if a value is equal to any value in the list (or set)
returned by the subquery. It's like writing many OR conditions.

○​ Syntax: WHERE column_name IN
(subquery_that_returns_a_single_column_list)

Example: Find the names of students who are majoring in 'Computer Science' or 'Physics'.​
 SQL​
SELECT FirstName, LastName
FROM Students
WHERE MajorDeptID IN (SELECT DeptID FROM Departments WHERE DeptName IN
('Computer Science', 'Physics'));

○​
■​ Explanation:

■​ The subquery (SELECT DeptID FROM Departments
WHERE DeptName IN ('Computer Science',
'Physics')) returns a list of department IDs, say (10,
20).

■​ The outer query then becomes WHERE MajorDeptID IN
(10, 20), filtering students whose MajorDeptID is either 10
or 20.

●​ EXISTS Operator:​

○​ What it does: Checks for the existence of any rows returned by a subquery. It
returns TRUE if the subquery returns at least one row, and FALSE otherwise.
The specific values returned by the subquery don't matter, only whether any
row is returned. EXISTS is very efficient because the subquery can stop
executing as soon as it finds the first matching row. It's often used with
correlated subqueries (where the inner query depends on values from the
outer query).

○​ Syntax: WHERE EXISTS (subquery)

Example: Find departments that have at least one employee.​
 SQL​
SELECT DeptName
FROM Departments D
WHERE EXISTS (SELECT 1 FROM Employees E WHERE E.DeptID = D.DeptID);

○​
■​ Explanation: For each department D from the Departments table:

■​ The subquery (SELECT 1 FROM Employees E WHERE
E.DeptID = D.DeptID) is run. It tries to find any employee
(E) whose DeptID matches the current DeptID from the outer
Departments table (D.DeptID).

■​ If the subquery finds even one such employee, EXISTS returns
TRUE, and that DeptName is included in the result. If no such
employee is found, EXISTS returns FALSE.

●​ ANY (or SOME) Operator:​

○​ What it does: Compares a value to any value in the set returned by a
subquery. The condition is TRUE if the comparison is true for at least one
value in the subquery's result set. It's often used with comparison operators
(=, >, <, etc.).

○​ Syntax: WHERE expression comparison_operator ANY
(subquery_that_returns_a_single_column_list)

Example: Find employees whose salary is greater than the salary of any employee in the
'Sales' department.​
 SQL​
SELECT EmpName, Salary
FROM Employees
WHERE Salary > ANY (SELECT Salary FROM Employees WHERE DeptID = (SELECT
DeptID FROM Departments WHERE DeptName = 'Sales'));

○​
■​ Explanation: Let's say 'Sales' department salaries are (50000, 60000,

70000).
■​ Salary > ANY (50000, 60000, 70000) means: Salary

> 50000 OR Salary > 60000 OR Salary > 70000.
■​ So, if an employee has a salary of 55000, this condition is

TRUE because 55000 is greater than 50000.
●​ ALL Operator:​

○​ What it does: Compares a value to every single value in the set returned by

a subquery. The condition is TRUE only if the comparison is true for all values
returned by the subquery.

○​ Syntax: WHERE expression comparison_operator ALL
(subquery_that_returns_a_single_column_list)

Example: Find employees whose salary is greater than the salary of all employees in the
'Sales' department.​
 SQL​
SELECT EmpName, Salary
FROM Employees
WHERE Salary > ALL (SELECT Salary FROM Employees WHERE DeptID = (SELECT
DeptID FROM Departments WHERE DeptName = 'Sales'));

○​
■​ Explanation: Using the same 'Sales' salaries (50000, 60000, 70000):

■​ Salary > ALL (50000, 60000, 70000) means: Salary
> 50000 AND Salary > 60000 AND Salary > 70000.

■​ For this to be TRUE, an employee's salary would need to be
greater than 70000.

5.8 Set Operations

Set operations allow you to combine the results of two or more independent SELECT
statements into a single result set. They treat the output of each SELECT statement as a
"set" of rows and then perform standard set theory operations on them.

Crucial Requirement: Union Compatibility For set operations to work, the SELECT
statements being combined must be union compatible. This means they must:

1.​ Return the same number of columns.
2.​ Have corresponding columns with compatible data types in the same order (e.g.,

if the first column of the first query is a number, the first column of the second query
must also be a number).

Let's assume we have a Students table and a Faculty table with some common columns
(like FirstName, LastName, City).

●​ UNION:​

○​ What it does: Combines the result sets of two or more SELECT statements
and automatically removes any duplicate rows from the final result.

Syntax:​
 SQL​
SELECT column1, column2 FROM table1
UNION
SELECT column_a, column_b FROM table2;

○​

Example: Get a unique list of all first names and last names of everyone in the university
(both students and faculty).​
 SQL​
SELECT FirstName, LastName FROM Students
UNION
SELECT FirstName, LastName FROM Faculty;

○​
■​ Explanation: If 'John Smith' is listed as both a student and a faculty

member, he will only appear once in the final combined list.
●​ UNION ALL:​

○​ What it does: Combines the result sets of two or more SELECT statements
and keeps all duplicate rows. It does not perform the extra step of removing
duplicates, making it generally faster than UNION.

Syntax:​
 SQL​
SELECT column1, column2 FROM table1
UNION ALL
SELECT column_a, column_b FROM table2;

○​

Example: Get a full list of all first names and last names of everyone (students and faculty),
even if there are duplicates.​
 SQL​
SELECT FirstName, LastName FROM Students
UNION ALL
SELECT FirstName, LastName FROM Faculty;

○​
■​ Explanation: If 'John Smith' is both a student and a faculty member, he

will appear twice in the final combined list.
●​ INTERSECT:​

○​ What it does: Returns only the rows that are common to both SELECT

statements' result sets. In other words, it finds the overlap.

Syntax:​
 SQL​
SELECT column1, column2 FROM table1
INTERSECT
SELECT column_a, column_b FROM table2;

○​
○​ Note: The INTERSECT operator is supported in databases like PostgreSQL,

Oracle, and SQL Server. However, MySQL does not have a direct
INTERSECT keyword. In MySQL, you would achieve the same result using
INNER JOIN or EXISTS with a subquery.

Example: Find individuals who are listed as both a student and a faculty member (based on
their first and last name).​
 SQL​
SELECT FirstName, LastName FROM Students
INTERSECT
SELECT FirstName, LastName FROM Faculty;

○​

●​ EXCEPT (or MINUS in Oracle):​

○​ What it does: Returns the rows that are present in the first SELECT
statement's result set but are not present in the second SELECT
statement's result set. It's like finding what's unique to the first set when
compared to the second.

Syntax:​
 SQL​
SELECT column1, column2 FROM table1
EXCEPT
SELECT column_a, column_b FROM table2;

○​
○​ Note: The EXCEPT operator is supported in databases like PostgreSQL and

SQL Server. In Oracle, it's called MINUS. MySQL does not have a direct
EXCEPT or MINUS keyword. In MySQL, you would typically achieve this
result using LEFT JOIN with WHERE ... IS NULL or NOT EXISTS.

Example: Find students who are not also listed as faculty members.​
 SQL​
SELECT FirstName, LastName FROM Students
EXCEPT
SELECT FirstName, LastName FROM Faculty;

○​

Module Summary

You've just completed a deep dive into the truly powerful aspects of SQL queries! This
module has equipped you with the advanced tools needed to perform sophisticated data
analysis and retrieval, moving far beyond simple data selection.

We started by understanding Aggregate Functions (COUNT, SUM, AVG, MIN, MAX), which
allow you to quickly summarize large datasets into single, actionable values. To apply these
summaries to specific categories of your data, you mastered the GROUP BY clause, learning
how to group rows with common characteristics. To filter these summarized groups based on
aggregate results, you learned the crucial role of the HAVING clause, distinguishing its
purpose from the row-level filtering of WHERE. To ensure your query results are always
presented in a clear and organized manner, you gained expertise in the ORDER BY clause
for sorting your output.

A cornerstone of relational databases is the ability to connect information across different
tables, and you thoroughly explored this with SQL Joins. You now understand the nuanced
differences and applications of INNER JOIN (for exact matches), LEFT JOIN (to include all

from the left), RIGHT JOIN (to include all from the right), and FULL JOIN (to include all
from both). You also learned how to use a SELF-JOIN to find relationships within a single
table and understood the concept of a CROSS JOIN.

Finally, you advanced your query construction skills with Subqueries (Nested Queries),
learning how to embed one SELECT statement within another to solve complex problems.
You differentiated between Scalar, Row, and Table subqueries based on their return type
and purpose. Complementing subqueries, you gained proficiency in the powerful conditional
operators: ANY, ALL, EXISTS, and IN, which allow for highly specific and dynamic filtering
based on subquery results. You concluded by understanding Set Operations (UNION,
UNION ALL, INTERSECT, EXCEPT), enabling you to combine or compare the results of
multiple independent queries.

With the detailed knowledge and practical examples from this module, you are now
well-equipped to design and execute complex SQL queries, unlocking deep insights from
your relational databases and preparing you for even more advanced database system

	Module 5: Structured Query Language (SQL) - Part 2
	Chapter 5: Advanced SQL Queries
	5.1 Aggregate Functions
	5.2 GROUP BY Clause
	5.3 HAVING Clause
	5.4 ORDER BY Clause
	5.5 SQL Joins
	5.5.1 INNER JOIN (or just JOIN)
	5.5.2 LEFT JOIN (or LEFT OUTER JOIN)
	5.5.3 RIGHT JOIN (or RIGHT OUTER JOIN)
	5.5.4 FULL JOIN (or FULL OUTER JOIN)
	5.5.5 SELF-JOIN
	5.5.6 CROSS JOIN

	5.6 Subqueries (Nested Queries)
	5.6.1 Scalar Subqueries
	5.6.2 Row Subqueries
	5.6.3 Table Subqueries (Derived Tables / Inline Views)

	5.7 ANY, ALL, EXISTS, IN Operators with Subqueries
	5.8 Set Operations

	Module Summary

